Failure of metals
Contents |
[edit] Introduction
The implications and impact of metal failure in construction are significant, ranging from economic damage to possible injury and structural instability. Metal components fail for a wide range or reasons. Elements of which they are a component could be badly designed, or the metal components themselves could be poorly designed, fabricated or maintained, or they might be used outside of their intended purpose.
Metal failures can occur unexpectedly and so are often difficult to anticipate. It is important therefore that anticipated conditions are carefully modelled during the design process to pinpoint where potential failures may occur.
Where they do occur, metal failures should be subject to a systematic and detailed investigation to determine the cause and to identify avoidance measures for the future. Forensic engineering is capable of determining the root cause of metal failures with a great deal of accuracy. Unique identifiers are left by the various failure types which enable the exact nature of the failure to be identified.
The most common types of metal failure are described below.
[edit] Overload
This type of failure is caused when applied loads stress the metal beyond its ultimate strength. Failures can occur very rapidly, and are influenced by the material type, its heat treatment, and so on. Overload failures are generally categorised as:
- Ductile: The component stretches or bends to some degree before failure.
- Brittle: The component breaks with little or no distortion.
Metal components will have design specifications which identify the maximum load that is capable of being applied before failure occurs. Keeping the component loading levels well below the design specifications is the simplest and easiest way of avoiding this kind of failure.
[edit] Fatigue failure
Fatigue failure is the most common type of metal failure. The failure is easily detected by the recognisable ‘beach markings’ that are left on the fracture surface.
It occurs when repeated or fluctuating loads are imposed that allow a small material failure to develop into a larger one, over a long period of time. A fatigue crack is allowed to gain a foothold, usually at a machine mark, corrosion pit, surface scratch or other surface imperfection. The beach markings indicate the direction of the crack as it progresses across the fracture face. Total failure occurs when the applied load cannot be carried by the unaffected area that remains.
Compared to the material stress limits, fatigue failure can occur at relatively low stress levels, sometimes below its yield strength.
[edit] Stress corrosion cracking (SCC)
SCC is caused when three factors are in combination:
- Tensile stress.
- A susceptible material.
- A corrosive chemical environment.
Similar to fatigue failure, SCC initially occurs at stress levels that would not usually cause failure were there not a chemical factor present.
Metals that are exposed to chemical agents at high temperatures or pressures are at particular risk of SCC, and can fail suddenly.
[edit] Corrosion
Corrosion can occur when compressive residual stresses on the surface of metal components are induced.
Laser peening is a remedial solution that can modify the surface of components and reduce the risks attached to operating in a corrosive environment imparting beneficial residual stresses in materials.
[edit] Fretting
Fretting can occur when the surfaces of metal components slide against one another and generate abrasive compounds. As this motion continues, the abrasive components score the surface and cause a form of wear known as fretting.
If fretting is not prevented by methods of cold working the surface with laser peening, it can lead to further corrosion or fatigue cracking.
[edit] Erosion
Erosion can occur due to repeated exposure to adverse environmental and weather conditions such as wind, ice and water. Laser peening can harden surfaces to protect against erosion.
[edit] Creep
Creep is a risk for metal components that are exposed to stresses at elevated temperatures. Deformation results from grain boundary sliding, a mechanism in which grains are displaced against each other at high temperatures.
[edit] Hydrogen embrittlement
Hydrogen embrittlement occurs as a result of exposure to hydrogen, for example, in the manufacture or processing of high-strength steels and titanium and aluminium alloys. It reduces the ductility and load-bearing capacity of affected materials, which can cause cracking or failure at below normal yield stresses.
For more information, see Hydrogen embrittlement.
[edit] Related articles on Designing Buildings Wiki
- Brittle fracture.
- Creep.
- Defects in construction.
- Degradation of construction materials.
- Failure of cast iron beams.
- Forensic investigations: can we trust them?
- Graphitisation.
- Guidance for construction quality management professionals: Structural Steelwork.
- Hydrogen embrittlement.
- Latent defects.
- Major cast metal components.
- Metal fabrication.
- Patent defects.
- Rebar.
- Roofing defects.
- Rust.
- Spangle.
- Stainless steel.
- Steel framed rooflights.
- Structural failures.
- Structural steelwork.
- Types of steel.
Featured articles and news
RTPI leader to become new CIOB Chief Executive Officer
Dr Victoria Hills MRTPI, FICE to take over after Caroline Gumble’s departure.
Social and affordable housing, a long term plan for delivery
The “Delivering a Decade of Renewal for Social and Affordable Housing” strategy sets out future path.
A change to adoptive architecture
Effects of global weather warming on architectural detailing, material choice and human interaction.
The proposed publicly owned and backed subsidiary of Homes England, to facilitate new homes.
How big is the problem and what can we do to mitigate the effects?
Overheating guidance and tools for building designers
A number of cool guides to help with the heat.
The UK's Modern Industrial Strategy: A 10 year plan
Previous consultation criticism, current key elements and general support with some persisting reservations.
Building Safety Regulator reforms
New roles, new staff and a new fast track service pave the way for a single construction regulator.
Architectural Technologist CPDs and Communications
CIAT CPD… and how you can do it!
Cooling centres and cool spaces
Managing extreme heat in cities by directing the public to places for heat stress relief and water sources.
Winter gardens: A brief history and warm variations
Extending the season with glass in different forms and terms.
Restoring Great Yarmouth's Winter Gardens
Transforming one of the least sustainable constructions imaginable.
Construction Skills Mission Board launch sector drive
Newly formed government and industry collaboration set strategy for recruiting an additional 100,000 construction workers a year.
New Architects Code comes into effect in September 2025
ARB Architects Code of Conduct and Practice available with ongoing consultation regarding guidance.
Welsh Skills Body (Medr) launches ambitious plan
The new skills body brings together funding and regulation of tertiary education and research for the devolved nation.
Paul Gandy FCIOB announced as next CIOB President
Former Tilbury Douglas CEO takes helm.
UK Infrastructure: A 10 Year Strategy. In brief with reactions
With the National Infrastructure and Service Transformation Authority (NISTA).